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The effect of an imperfect system on the measurement of squeezing is studied. It is shown that
the imperfectly efficient detectors and the unbalance of the beam-splitter will reduce the measured
squeezing. The effects on quadrature phase squeezing and photon number squeezing are different
from the usual balanced homodyne detection.
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I. INTRODUCTION

The phase-sensitive detection of quantum noise, such as homodyne detection, has
been extensively discussed since it was originated principally by Yuen and
Shapiro. [1-3] With this detection, the quantum noise of nonclassical light was mea-
sured, such as quadrature phase squeezing. [4.5] Measurement of photon number
squeezing can also be realized by using an alternative scheme of homodyne detec-
tion®”),i. e., the balanced detection. However, most of the discussions about the
squeezing measurement considered that the beam-splitter and the photodetectors are
perfect or balanced. Practically, the beam-splitter and the photodetectors are imper-
fect. Loudon and Knight considered the imperfectly efficient detector in the direct-
detection experiment. (5] However, the effects of the imperfect detectors and beam-
splitter in the usual balanced homodyne detection is not clear. When the two parts of
the 50-50 beam-splitter are not exactly equal and the quantum efficients of the two de-
tectors are unbalanced (this is the usual case), how is the measured squeezing affect-
ed? Does the imperfect detection make the same effect on differently balanced homo-
dyne systems?

The effect of the imperfect beam-splitter and detectors in the general homodyne
detection on the squeezing of light is studied in this paper. Two typically schematic
arrangement of homodyne detectors are discussed. The first one is the usual balanced
homodyne detection, with which the quadrature squeezing is measured with strong lo-
cal oscillator. The second one is for the measurement of photon number squeezing, in
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which the input beam is split into two equal parts by a beam-splitter. It is shown that
the measured quantum noise is affected in different ways by the non-ideal system.

II. GENERAL HOMODYNE DETECTION

Figure 1 is the general scheme of balanced homodyne detection in which a and b
are the input modes, BS is a beam-splitter with the amplitude reflection r and trans-
mission coefficients ¢. The output mode destruction operators are given by (5]

d 2 output

D2C|7 @

Fig.1. General homodyne detection. a(b): input modes; v’s: vacuum inputs; d’s:

combined modes; r’s and ¢’s: amplitue reflection and transmission coefficients,
respectively; BS’: beam-splitters; D’s: photodetectors; +/ — :combiner.

di=rb+ta, di =r*b*+t"at, (1)
d,=th+ra, d; =t"b"+r"a", (2)
where unitarity of the coupling coefficients réquires that
e+ |r|? =1, (3)
t"r+r*t=0. (4)

The quantum efficients of the photodetectors D, and D, are 7, and 7,, respectively.
The imperfectly efficient detectors can be modelled by the arrangement shown in the
dashed box in Fig. 1, where the inefficiency in detection is ascribed to the loss of light
at the beam-splitters BS, and BS,, which transmit only fractions 7,'/? and 7,"/? of the
incident amplitudes, respectively. >®! The destruction operators after BS; and BS, are

di = tid; + rivy = t;rb + tita + rivy, (5)
dy, = tad, + rov, = tyth + thra + ryv;, (6)
and their Hermitian conjugates, where ¢, r, and ¢,, r, are the amplitude transmission
and reflection coefficients of the BS; and BS,, respectively, and ] tq I = 771{2, ‘ ty | =

7]142, |t1|2 + ‘ﬁfz = Itzfz + lrzlz = 1. And v, and v, represent an inevitable



342 Zhang Tian-cai et al . Vol.7

admixture of a vacuum field from the other input port to the beam-splitters BS, and
BS,, respectively. The field d;” and d,” are now assumed to be detected with 100%

efficiencies. The photocurrents are then subtracted or summed by the combiner +/ —. What
we are concerned is about the quantum noise output from the +/— combiner. Though
the photodetectors only detect the slowly varying of the optical field, they response
the photon number operator effectively. The measured noise is the variance of the
difference or sum of the photon numbers detected by D; and D,, because the response
time of the photodetectors is much shorter compared with the fluctuation period. (5]
That is to say, the measured noise is

<AL>=<(d/"d) +d)" d)) >-<d/"d) +d,) dy >, (7)
where + and — correspond to the +/— combiner and
di’tdy =t{r tirb b+t r titb  a+t{ r*ribt v,
+ert tyrat b+t tita  a+t{t riat v+ i tyrofd
+ rititvia + r{ rivf vy, (8)
dy " dy =ttt tathT b+ttt trbt a+ b, t bt v,
+ttoritatat b+t r tarat a+ ty rirat vy + 1) tatvib
+ ) tarvia + ry ryvs v,. 9)
According to Egs. (7) — (9), we have
<AI>=A< b " bb* b >+ A, B.< bbbt a >+ A, C.< b* ba* b >
+A:D:<b"ba"a>+B, A< b ab" b >+Bi< b* ab* a >
+B, Ci< b aa*b>+B,D.< b aa*a>+C.A.<a* bb" b>
+CyBi<a"bb'a>+Ci<a*ba*b>+C,D,<a*ba"a>
+D,A;<a*ab"b>+D.B.<a*ab*a>+D,C.<a*aa* b>
+Di<a'aata >+ (|t1|*|ri|*t r+ |22 r2|*r*t) <a* b >
+(\t1|21"1[2|tl2+ |t2|2|7‘z|2|r|2)<a+a>
+(|t1’2|71|2r*t+ itz’2|f2|2t*r)<b+a>
+ (PPl 2+ 22 22212 < 8% 8 >
- [A.<b* b >+B.<b*a>+Ci<a*b>+D,<a*a>]% (10)

where
As=[e|*[ 7|2 £ [22]?]2]2, (11a)
Bo=|t1|2r" ¢ £ | 82|27, (11b)
Co=|t1|%t"r £ [22]*r", (11¢)
D.=|t:|*[t|* £ [t2]?] r]2 (11d)

We will consider two typical cases in the following.
III. MEASUREMENT OF SINGLE-MODE SQUEEZED VACUUM STATES

A single-mode squeezed vacuum-state is defined as '°!
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| 0¢) = S(&) 1 0), (12)
where
=ze?  (0<z<,0<<0<2n) (13)
is the complex squeeze parameter; S(§) is the unitary squeeze operator and IO> is the
vacuum state. In order to measure the squeezing of the squeezed vacuum state, let the
input a in Fig.1 be the squeezed vacuum state |05> and b the coherent state ’B) which
is called local oscillator, thus we have

b18) =818). (14)
Using the following relations!®’

S71(&)aS(¢) =acoshz — a* e’sinhz, (15a)
S™'(&)a* S(&) =a* coshz — ae sinhz, (15b)

we can prove for the squeezed vacuum and coherent states that
<btebtb>=[B|*+ |82 (16a)
<b*ba*ta>=<a"ab* b >= |B|%sinh’z, (16b)
< b*ab* a >=- B"%’sinhzcoshz, (16¢)
< b aa* b >= |B|*cosh’z, (16d)
<a*bbta>=(1+|B]*)sinh’z, (16e)
< a*ba® b >=- e ’sinhzcoshz, (16f)
< a"aa® a >= 2sinh®*zcosh’*z + sinh‘z, (16g)
<b*b>=|p|% (16h)
< a®a>=sinh’z. (16i)

”»

Other terms in Eq. (10) are zero. In this configuration, we just consider the “—" of

the combiner. From Egs. (16) we get
< A*[_>=A% [gl*- B B " *sinh z coshz € - C2 B*sinhz coshz e?+B_C_ | B|%(sinh’*z
+cosh?z) + |B12(| ey |*| 7o || 712 + | 22]%] 72|*] £]2) + B_ C_ sinh*=

+ 2D?% sinh’*zcosh’z +([t1}2‘r1|2|t|2 + |t2]2|r2|2|r!2)sinh2 z, (17)

where -
A =2 r ]2 = 22|22 D)2, (18a)
B2=CX%= |t [*r"282 + 12232 = 2| t1|?| 22| % £ |2| 7|2, (18Db)
B_C_=|r|?|e|2(| 2] + |22]®)?, (18c¢)
DX=(|e[?]e]? = [ 22]?] 7|22 (18d)

Consider |B|*>1,i.e., the local oscillator is much stronger than the squeezed vacuum
input, the last three terms in Eq. (17) are small and can be neglected. By using the re-
lations (3) and (4), Eq.(17) can be simplified
<AL >=[[e|*[r2+ [P 22+ 202 r 2|21 2
+ | 2]?)?(sinh’z + sinhzcoshzcos(8 - 2¢,)) ]| 812, (19)
where ¢, is the phase of the local light. When the input a is the vacuum, i.e., z=0,
the output corresponds to the standard quantum limit(SQL), which is
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SQL = (|1 [*[r]?+ [02]*[£®) ] 812 (20)
For the perfect process, |21]|?> = [2,|> = 1and |7|? = |¢]? = 1/2, thus
SQLyew = |B1%. (21)

For the squeezed vacuum input, the detected noise varies with the phase of the local
light ¢,. When ¢, = (6 — x)/2, the minimum noise, which corresponds to the noise of
the squeezed quadrature phase, is

< AT > =[ltl®lr2+ [a2]* 2|2+ 2] r[2(|t:]?

+ | 2,|*)%(sinh?= —sinhzcoshz)]|ﬂ|2. (22)
And for the ideal measurement, we get, similarly,
< A21—>QPideal = e—Zz‘ﬂP. (23)

This is consistent with the results obtained by London and Knight. (5] The squeezing
for the perfect measurement is
S = SQLigeat =< A*I- > opigeal
, QPideal = SQLigeat
and for the imperfect system, the measured quadrature phase squeezing is
s _saL-< A1 >qp _ (p+ 72)°RT_

QPm = SQL - mR+ T QPideals
where R and T are, respectively, the intensity reflectance and transmittance of the
beam-splitter BS.

If the beam-splitter is ideal, i.e., R=T=1/2, then

=1-e7%, (24)

(25)

1
Sopm = 3(771 + 72) Sqpideals (26)
and for the perfect detectors, i.e., 7, =7,=1, ~
SQPm = 4RTSQdeeal (27)

IV. MEASUREMENT OF THE PHOTON NUMBER SQUEEZING

In the measurement of photon number squeezing, we used an alternative scheme

of balanced detection. Let the input a be a single-mode field and b the vacuum |0> in
Fig.1. The +/— combiner gives the full intensity noise and the shot noise limit
(SNL). "] In this case, most of the terms in Eq. (10) are zero and the nonzero terms
are the following:

C.B.<a"bb"a>=CiBis<a"a>=CiB.<N >, (28a)
Di< a* aa® a >= D3 < N? >, (28b)

and
<a'a>=< N>, (28c)

where we have let N = a* a , which is the photon number operator. It is easy to show
that

< A, >py =(B, C.+ |t1|2|71|2|t|2+ [t2|2]r2\2|rl2) < N>
+ D% (< N2 >-< N >?). (29)
In an ideal measurement,
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B.C,=1, D=0, (30a)
B_.C_.=0, D=1. (30b)
So we have
< AT >ppjgea =< N >, (31)
and
< AT Spniger =< N2>-< N >2 =< AN >, (32)

which are exactly the SNL and the full photon number noise of the input ¢ mode, re-
spectively. The ideal photon number squeezing is

A SNLigeas =< A1, > prigeat K< N>-< AN > (33)
PNideal SNL,. - < N> '

Considering the non-ideal measurement, we have
<A >py —< A, >py
<A >py :
B (B, C,=B_C_)< N>+ (D2-D?) < 4N >
a2+ TalP P < N>= ([0l 2= [6[2] 7 PA< N>-< 22N >)
_ 4RT7; 7, Senideal
(9T + 9,R) - (n, T - 772R)ZSPNideal’
where B., C. and D, are given by Eqs. (11). If the beam-splitter is balanced, then
27, 7, SpNideal
(9, + 9,) - (9, - 7)2)ZSPNideal,
and if the quantum efficiencies of the detectors are also balanced, i.e. yM=1=17,we
have

SPNm =

(34)

SPNm = (35)

SeNm = 7S PNideal - (36)
If the photodetectors are perfect, and the beam-splitter are unbalanced, then
4RTSpnige
SPNm — PNideal (37 )

1= (T - R)*Serigeas’
In order to discuss the effect of the unbalance on the measured squeezing, let

tas = R/ T, (38)
Tpp = 771/’72’ (39)
7= (n+ 7)/2. (40)

Here g5 and zpp represent the unbalance of the beam-splitter and the photodetectors.

We get from Eqgs. (25) and (34)

s _ 297ps(1 + 7pp) S

P T (1 + 7s) (1 + rpgrpp) - Fidedl?
877D TS SpNideal

(ep + 7as) (1 + 758) (1 + 7pp) = 27(7pp — 7s)* Sprideas
Figures 2 and 3 show the measured squeezing due to the unbalances of the beam-split-
ter and the quantum efficiencies of photodetectors, where we have supposed the input
mode a are perfectly squeezed, i.e., S qpideal = SpNidgeat = 1 and the mean quantum effi-
ciency 7= (7, + 7,)/2 = 0. 85. Comparing Fig. 2 with Fig. 3, we can see that the

(41)

Seam = (42)
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photon number squeezing is less affected by the unbalance than the quadrature phase
squeezing. In fact, in the measurement of photon number squeezing, there exists
some noise reduction in SNL and the total intensity noise due to the effects of the in-
put squeezed light and the unbalance of the system, and the noise reduction will com-
pensate the reduction of squeezing due to the unbalance.

~
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Fig.2. Measured quadrature phase squeezing Sqp, affected by the imperfect system, where
the input squeezing is 100% and the mean quantum efficiency of the two photodetectors is
0.85; tps and 7pp are defined by Eqgs. (38) and (39), respectively.

Fig.3. Measured photon number squeezing Spn, affected by the imperfect system,
where the input squeezing is 100% and the mean quantum efficiency of the two
photodetectors is 0.85; s and pp are defined by Egs. (38) and (39), respectively.

V. CONCLUSION

In conclusion, the effect of the non-ideally balanced homodyne detection on the
squeezing have been discussed. It is shown that the imperfectly balanced beam-splitter
and the photodetectors reduce the squeezing of the input field in different ways for
the squeezings of squeezed vacuum state and the photon number squeezed state. This
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discussion will show practical benifit from the design of mesaurement of quantum state
as well as the use of the nonclassical light.
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